AnEnergyConserving Local DiscontinuousGalerkin Method for a Nonlinear Variational Wave Equation
نویسندگان
چکیده
We design and numerically validate a local discontinuous Galerkin (LDG) method to compute solutions to the initial value problem for a nonlinear variational wave equation originally proposed tomodel liquid crystals. For the semi-discrete LDG formulation with a class of alternating numerical fluxes, the energy conserving property is verified. A dissipative scheme is also introduced by locally imposing some numerical “damping” in the scheme so to suppress some numerical oscillations near solution singularities. Extensive numerical experiments are presented to validate and illustrate the effectiveness of the numerical methods. Optimal convergence in L2 is numerically obtained when using alternating numerical fluxes. When using the central numerical flux, only sub-optimal convergence is observed for polynomials of odd degree. Numerical simulations with long time integration indicate that the energy conserving property is crucial for accurately capturing the underlying wave shapes. AMS subject classifications: 65M60, 65M12, 35Q35
منابع مشابه
VARIATIONAL HOMOTOPY PERTURBATION METHOD FOR SOLVING THE NONLINEAR GAS DYNAMICS EQUATION
A. Noor et al. [7] analyze a technique by combining the variational iteration method and the homotopy perturbation method which is called the variational homotopy perturbation method (VHPM) for solving higher dimensional initial boundary value problems. In this paper, we consider the VHPM to obtain exact solution to Gas Dynamics equation.
متن کاملA Novel Approach for Korteweg-de Vries Equation of Fractional Order
In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...
متن کاملSolution of Wave Equations Near Seawalls by Finite Element Method
A 2D finite element model for the solution of wave equations is developed. The fluid is considered as incompressible and irrotational. This is a difficult mathematical problem to solve numerically as well as analytically because the condition of the dynamic boundary (Bernoulli’s equation) on the free surface is not fixed and varies with time. The finite element technique is applied to solve non...
متن کاملOptimization of Solution Regularized Long-wave Equation by Using Modified Variational Iteration Method
In this paper, a regularized long-wave equation (RLWE) is solved by using the Adomian's decomposition method (ADM) , modified Adomian's decomposition method (MADM), variational iteration method (VIM), modified variational iteration method (MVIM) and homotopy analysis method (HAM). The approximate solution of this equation is calculated in the form of series which its components are computed by ...
متن کاملApplications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کامل